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1. INTRODUCTION 

Strictly speaking, the analog circuits derived in this discussion de- 

scribe the static elastic behavior for various distributed elastic structures. 

Linear elasticity theory and strain energy procedures form the basis of the 

derivations as depicted by the flow diagram of Figure 1. The strain energy 

is expressed in terms of the displacements (and their spatial derivatives) 

although equivalent circuits ‘can be developed by expressing the elastic 

energy in terms of forces and moments. 

Coordinate System 

Strain Energy 
. + 

Equilibrium Equations 

4 
Hooke’s Law 

c 

. 

Elemental Elasticity Circuits 
l with Strains and Strain Energy 4 

in Terms of Deflections 

Boundary Conditions r Be Circuit Synthesis 

w 

Completed Analog 

Figure 1. Strain Energy-Compatibility Approach for a Passive Electrical 
Analog of an Elastic Structural System 
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; 
By defining the displacements and their spatial derivatives as 

voltages, the strain energy can be expressed such that each of the in- 

dividual terms corresppnd, electric’ally to power.dissipation across : 
resistors.. . . Transformers :are then used to construct the s;patial geom- 

etry described by the displacements and their spatial derivatives while 

resistors are added to account for the strain energy. The magnitudes 

,of the resistors are inversely proportional to the magnitudes of the cq- 

efficients in the strain energy expression and the current flows through 

these resistors are proportional to internal forces or moments. These 

circuits are force-current: displacement-voltage analogs or static- 

mobility analogs. In the discussions which follow, static-mobility ana- 

logs are derived for (1) a flat rectangular plate, (2) a flat circular 

plate and (3) a cylindrical, shell. 

Such “static” circuits can be readily converted to describe the 

dynamic behavior of a specific elastic structure (References 1 and 3). 

.The “dynamic” circuit is called a mobility analog and is obtained from 

the “static ” circuits in the following way: 

1. the voltages are redefined as spatial velocities 

2. inductors are substituted for resistors 

3. capacitors are added at appropriate nodes. 

The inductors account for the strain energy while the capacitors account 

for inertial forces associated with lumped masses. ‘-The transformer 

interconnections (which, in general, are the most,difficult tasks in the 

analog development) remain unchanged. Thus, knowing the analog . 
circuit for the static elastic behavior of a specific distributed struc- 

ture, the dynamic circuit (or mobility analog) is ensured. 
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2’. ELAS’TIC BEHA&R.OF A FLAT ‘~GCTAIGU~AR PLATE” ” 
, 

The.physical system is shown,in Figure 2 as a flat rectangular differ- 

ential plate segment-of dimensions dx, dy and of thickness h. The bending 

moments per unit length are denoted as M and M 
xx YY 

while the twistihg 

moments per unit length are shown by M and M 
XY YX - 

The shear forces per 

unit length are shown as Qx and Q . Deflections are assumed to be small 
Y .’ 

in comparison to the plate thickness and strain in the middle pla.ne of the, 

plate is assumed ne.gligible. 

The equation of motion can be written as 

Dv4(w) + rnZ = 0 (2.1) 

where m is the mass per unit area, w the lateral deflection from the static 

equilibrium position, v the Poisson’s ratio and 

D= Eh3 

12(1 - v2) 

v4= a2+az 2 

1 1 ax2 ay2 

(2. 2) 



The coefficient D is the flexural rigidity of the plate, E is Young’s modulus, 

and V denotes the dell operator which is used in this section to define the 

spatial derivatives for rectangular geometry. 

Expressed as functions of the strains (Reference 4, page 46), the strain 

energy per unit area for a differential segment of rectangular plate in 

bending becomes 

2Vo=D[(92+(92+2v8x;;23 +2D(l-~)[fi]~ (2.3) 

In alternate form, Eq. (2. 3) may be rewritten as 

where the first two terms account for the strain energy in bending and the 

remaining term specifies the strain energy due to twisting. 

Multiplying Eq. (2.4) by the plate dimensions (Ax, Ay, ) and ex- 

pressing the spatial derivatives as spatial first order difference expressions, 

the strain energy for a difference segment of rectangular plate becomes 

+ v 2 Aycey) I 2 
t D 2 (1 - v2) Ayvy) [ 1 2 

(2. 5) 

t 2D 2 (1 - VI 
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where the slopes in bending are defined by 

8 =aw 
X ax 

8 
aw =- 

Y ay 
(2.6) 

and the difference operator Ajc I denotes the first order difference of the 

quantity ( ) with respect to the jth direction. By interpreting the bracketed 

terms as voltages, Eq. (2. 5) is expressed in terms of electrical power 

dissipation by 

3 E2 
2V=P=): r;L 

j=l j 
(2.7) 

where E. 
J 

is the voltage drop across the R. resistor. 
J 

In expanded form, 

Eq. (2. 7) becomes 

2 
E1 2V=P=-t Et+E:. 

R1 R2 Rj 

where the voltages are defined by 

El = a,(~,) + v 2 A,P,I 

E2 = A,ce,~ 
E3 = A,ce,, 

5 

(2. 8) 

(2. 9) 



and the resistors are of magnitudes 

Ax 1 
R1=-- AY D 

4Y 
R2 = Ax 

1 

D(l - v2) 

R3+ ’ 
2D(l - v) 

(2.10) 

By constructing a two dimensional rectangular grid in the coordinates 

x and y, the voltages can be formed electrically to produce the circuits of 

Figures 2. These circuits are electrically equivalent to the strain energy 

given by Eq. (2. 5) with the voltages equivalent to lateral and angular dis- 

placements and the currents equivalent to shear forces and moments. The 

finite difference grid shows nine rectangular plate segments where the x- 

difference positions are given by capital letters and the y-difference positions 

as numbers. Thus, the numerical difference between two consecutive letters 

is the difference length Ax whereas the difference between two consecutive 

digits is the difference length Ay . The positive signs indicate the trans- 

former polarity and define the manner in which the transformers must be 

interconnected to form the proper spatial geometry. 

Although sketched as three distinct circuits: (1) the lateral deflection 

circuit, (2) the Bx slope circuit, and (3) the 8 circuit, these circuits are 
Y 

magnetically coupled by the transformers. Transformers 2 and 3 couple 

the lateral deflection with the 8 and 9 
X Y 

slope circuits, respectively. 

Transformer 1 accounts for the Poisson coupling in the first bracketed term 
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of Eq. (2.4) by constraining the 8 and 0 circuits. 
X Y 

Resistors RI and 

R2 account for the bending strain energy while the R3 resistor accounts 

‘for the twisting strain energy. To include the effects of lateral loa’ding, 

current generators are added to the nodes in the deflection circuit with the 

current input being equivalent to the magnitude of the lateral loading acting 

over a difference segment of plate. 

Since the magnitudes and directions of forces and moments are re- 

quired to calculate stresses in various sections of the plate, it is necessary 

to know the mechanical equivalents of the currents through the resistors. 

The relationships between the moments and curvature are (Section 21 of 

Reference 4) 

(2. 11) 

a(@ 1 
M = -M 

XY YX 
= D(1 - v) + 

a2w 
where - 

axay 
is arbitrarily expressed as a partial derivative of the slope 8 . 

Y 

Consider the calculation of current flow through R2. To form the E2 

voltage from the expressions in (2. ll), the Mxx bending moment is multi- 

plied by Poisson’s ratio, then subtracted from M 
YY 

producing the result 

2 
- (Myy t v MS) = D (1 - v2) 5 [ 1 ay 

(2. 12) 
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As a difference equation, Eq. (2. 12) appears as 

-Ax(M -vM 
xx) 

A%(1 - 
AY 

v2) Ayvy) (2.13) 
YY 

In form, Eq. (2. 13) is similar to Ohm’s law for current flow through a 

resistor 

5 
‘j = R 

j 

where 

E2 = Ay(ey) 

AY 1 
R2 = Ax ’ 

D(1 - v2) 

(2. 14) 

(2. 15) 

I2 
E I(R2) = - Ax (M 

YY - 
vM 

xx) 

In a similar manner, current flows through Rl and R3 are determined as 

I(R1) = -Mxx AY 

I(R3) = (Mxy - Myx) AY 

(2. 16) 

By convention Eq. (2. 14) implies positive current flows through the resistors; 

i. e. flows from a higher potential to a lower potential. 
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Figure 2. Differential Segment of a Rectangular Plate in Bending 
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Figure 2-a. Deflection Circuit (w) for a Rectangular Plate in Bending 
Assuming Small Deflection Theory 

.. 
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Figure 2-b. 0, Circuit for a Rectangular Plate in Bending Assuming 
Small Deflection Theory 
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Figure 2-c. ey Circuit for a Rectangular Plate in Bending Assuming 

Small Deflection Theory 
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Circuit Elements 

Resistors 
~. .~ .~~~~ 

R1 =&. $ 
AY 

ay 
R2 = Ax ’ 

1 

D(1 - v2) 

R3=aX. 1 
AY 2D(l - v) 

Transformers 

p1 Ax -= v- 
Sl AY 

p2 
-= Ax 
s2 

p3 
- = Ay 
s3 

D= Eh 
3 

12(1 - v2) 
= flexural rigidity of the plate 

E = Young’s modulus 

h = thickness of the plate 

v = Poisson’s ratio 

Ax = incremental x distance of the plate grid 

Ay = incremental y distance of the plate grid 

Figure 2-d. Element Values of the Circuits for a Rectangular Plate 
in Bending 
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3. LATERAL ELASTIC BEHAVIOR OF A 

FLAT CIRCULAR PLATE 

The structure considered here is of two-dimensions and is described 

in terms of cylindrical coordinates as contrasted with the rectilinear co- 

ordinates for the rectangular plate. Linear elastic behavior is assumed 

so that the deflections are considered small compared with the thickness 

of the plate. 

A differential segment of thickness h for a circular plate and the 

accompanying moments and shear forces is shown as Figure 3. The 

bending moments per unit length are given as M and M 
r 9’ 

the twisting 

moments per unit length by M 
r9 

and M 
9r ’ 

and the shear forces per unit 

length by Q and Q . 
r 4) 

The equation of motion for the lateral vibration of a flat circular 

plate is 

D~4wtm~=0 (3.1) 

where the spatial operator for cylindrical coordinates appears as 

v4= 
1 
a,;&d 2 ar2 r2 a+2 1 (3. 2) 

and w denotes the lateral deflection (in the z direction) from the static 

equilibrium position of the plate. 
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In form, Eq. (3. 1) is similar to Eq. (2. 1); and differs only in the spatial 

geometry defined by the respective dell operator. 

The strain energy for a differential section of circular plate may be 

expressed symbolically as 

2v = 2Vb t 2v 
S 

(3. 3) 

where V 
b 

is the strain energy in bending and V s is the shear strain energy. 

In terms of the curvilinear deflections (and derivatives), the finite difference 

form of (3. 3) becomes 

2Vb = Dv2Ar 2 A,(e,)t rA+ or tA+(e+) 2 
r3A+ 

(3.4) 

and 
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&e ) t e t- 3: ri+ Af$(e$) 2 r 

(3. 5) 

A, y.) + y. -$-J, we) 2 

where 

e z & 
r 

A (w) 
r 

e+ z & A,+,(W) 
(3. 6) 

Consistent in form with energy dissipation by resistors, Eq. (3. 3) 

appears as 

5 E! 
ZV=P=):iif 

j=l 1 
(3.7) 

where the voltages across the resistors are defined by 

16 



El = $$ Arq + rA+ er + A+q,) 

~~ = rA+ or + e A,P,) + A,y.g 

E3 = &Ap+) - e+ 

E4 = A, & Ap,) + or +++Apg) 
1 1 

&A,q + or + &+Ap4J 

and the associated resistors are of magnitude 

R =&.L 
1 2 

v Ar 
D 

R =&.1- 
2 Ar D 

r 3 1 
R3=z5-S’ 

rAr 1 --. A 
R4 - A+ D 

R5=+!L $ 

17 
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(3. 9) 



The circuits displayed as Figures 3 are electrically equivalent to the 

strain energy given by Eq. (3. 3). The difference grid is described using an 

r-+ plane where the + difference positions are noted by capital letters and 

the r difference positions by numbers. The nodal voltages in the Or circuits 

correspond to the slope Or, the nodal voltages in the 0 
+ 

circuits correspond 

to the slope 8 
4)’ 

and the nodal voltages in the Q circuit correspond to the 

quantity 

r 
iG A r (or) + er + f$ 4 (e+) . 

The transformers couple the various circuits and serve only to form the re- 

quired geometry; and the resistors R 1, R2 and R3 account for the strain 

energy in bending while R 
4 

and R 5 account for the shear strain energy. 

To determine the magnitude of positive circuit flows through the vari- 

ous resistors, the relationships between shear forces, moments and curva- 

ture are required. In finite difference form, these relationships are 

M = e r 
r A+ [ 

% Arq + ra+ or + A+(q) 
I 

M+ 
= A?- 

r2A+ [ 

e Ar(er) t rA+ er t A+(e+) 
3 

M 
r+ 

=M r+=+A 

r 
[fa.‘BI’ - ‘+] 

(3. 10) 
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By comparing the form of Eqs. (3. 4) and (3. 5) with (3. lo), the positive 

currents are of values 

I (Rl) = v+M 
r 

I (R2) = e M+ 

1 (R3) = yff+$ M 
r+ 

1 (R4) = A+Q r 

(3.11) 

By assuming axial s ymrnetry, the spatial derivatives become inde- 

pendent of $ and no deflections in the + dimension are permitted. For 

this condition, the strain energy terms of (3.4) and (3. 5) reduce to 

= Dv’ArA+ 
I 

2 
2v 

b r y& Arq + e r 

+ DArA+ 
r Fr Ap,) + or 1 2 

19 

(3. 12) 



2~ = %r .A,(& Ar(er) + or) 2 
S [ I 

(3.13) 

and circuits simulating these equations are shown as Figure 4. From the 

stress-strain relationships given by Eq. (3. lo), positive current flows 

through the resistors are 

I(R1) = vArA+M 
r 

I (R2) = Ar A+ M+ (3. 14) 

I(R3) = A+Q r 

20 
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Differential Segment 
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M 
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Figure 3. Differential Segment of a Circular Plate and the Associated Forces 
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Figure 3-a. Q Circuit for an Arbitrary Section of Flat Circular Plate 
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Figure 3-b. Or Circuit for an Arbitrary Section of Flat Circular Plate 
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Figure 3-c. 8 
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Circuit for an Arbitrary Section of Flat Circular Plate 
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p2 pi -=-= 

s2 s2 
rA+ 

Resistors 

Circuit Elements 

Transformers 

R =&.i 
2 Ar D 

p1 -= r&i!2 . 

sl vAr ’ 
s1 Ar 

3 1 R3=I-. - 
ArA+ D 

rAr 1 --. - 
R4- A+ D 

T3 r 1 -=--- 

s3 
Ar 2 

R =+k.L 
5 D 

p4 1 -- - p5 1 
s5 

; -=- 
s4 rA+ 

D= Eh 
3 

12(1 - v2) 
= flexural rigidity 

E = Young’s modulus 

h = plate thickness 

r = radial distance 

- 

v = Poisson/s ratio 

Ar = radial distance 

rA+ = angular distance 

Figure 3-d. Circuit Element Values for an Arbitrary Section of 
Flat Circular Plate 
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Or Circuit: 

wr Circuit: e = 
\ 

p1 
I 

I I 

T - -+. 0 

Circuit Elements: 

Rl = 
r 

v2DArA+ 

R2= = 
DArA+ T2 

= Ar 

p1 
-= Ar 
s1 

Note: T2 is an autotransformer where Rl is tapped at position 

r+L . . . 
vAr 2 ’ 

R2 at posltlon Ar “+$ ; R3 at&+* 

Figure 4. Circuit for the Elastic Behavior of a Circular Plate with 
Axial Symmetry 
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4. ELASTIC BEHAVIOR OF A CYLINDRICAL SHELL 

Based upon a general theory of circular cylindrical shells (Reference 

4, pg 342), the equations for the elastic behavior appear as 

l- a2u+ 
2 

vau v aw P1 (1 - v2) 
-- 

ax2 2a2 a+2 
+itv a2v -----+ =o 

2a axa+ a ax Eh 

itv a2u +i- 2 va v 1 a2v 1 aw -- -- + --_-m 

2a axa 2 ax2 a2 a+2 a2 a+ 

+-hL a3w a3w 

12a2 ax2a+ 
+ 2 

a a+3 

+L l- 
2 vav -- 

12a2 2 ax2 

+ a2v 

a2 a42 

ax al.34 a 12 

ap3(1 - v2) 
= 0 

Eh 

P (1 - VJ, t 2 =o 
Eh 

(4.1) 

where u, v and w denote deflections in the x, y and z directions, a the 

radius of the cylindrical shell, pl, p2 and p3 external pressure loadings 
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directed in the x, 4 and radial directions, h the shell thickness, v Poisson’s 

ratio and E Young’s modulus. By adding the proper inertial force (i. e. mass 

times a second time derivative to each of the above equations), Eqs. (4. 1) can 

be resolved to equations of motion for a differential section of cylindrical 

shell. 

The total strain energy for a differential section of cylindrical shell 

is expressed as 

2v = 2vm + 2Vb (4. 2) 

where V is the strain energy due to membrane action and V 
b 

is the strain 

energy due to bending. In expanded differential form 

2v m = [Nxex + N4a4 + Nx4 v,,1 a d4 h 

(4. 3) 

where N x and N 
4 

are extensional forces per unit length, N 
x4 

the shear 

force per unit length, Mx and M 
4 

the bending moments per unit length 

and M x4 
the twisting moment per unit length. The strains associated with 

the forces and moments are shown as sx, s 
4 

, y x4’ xX* x4 
and x 

x4 
where 

the subscripts relate the strains with the appropriate forces and moments. 

By Hooke’s law, the stress-strain relationships for the extensional 

and shear forces are 
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NX =T pxt ve4] 
1 

N =N Eh 
x4 4x = 2 (1 t v) Yx4 

and for the bending and twisting moments 

-Mx = qxx + vx4] 

-M =D 
4 

M 
x4 

=M 
4x = D(l - v) x x4 

where D is the conventional rigidity 

DE Eh 
3 

12(1 - v2) 

(4.4) 

(4. 5) 

(4.6) 

In terms of the shell deflections and derivatives, the strains appear as 
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e =au 
X ax 

a2w 
xx = - 

ax2 

1 av 
e4=a W" [ 1 

=avtLau 
5~4 ax a a4 

(4.7) 

a2w 
x4=-$ --& 

[ I 

xx4=$$g.$t$~] 

By expressing the strain energy in terms of the strains, Eqs. (4. 3) 

can be restated in the form 

Eh 2 2 
2v 

In=2 
a d+ dx t Eh a d+ dx 

1 -v 

2 
a d+ dx 

2 
a d+ dx 

(4.8) 
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In finite difference form, the strains appear as 

A,(u) e =- 
X Ax 

A,@,) 
xx = Ax 

‘4 

yx4 = -& A,(u) 1 
(4. 9) 

x4 = 1 
a2A+ 

0,~ 1 
xx4 = & + i Axw 1 

By substituting (4. 9) into (4. 8) and assuming A+ as unity, the strain 

energy expressions become 

2v m= Ax(~~v2j~xw ++ (A,cv, - w)12 

t y A,(v) - w [ 1 2 

+ Axy; v) A,(v) + F A,(u) 1 2 

(4.10) 
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2vb = $$Axwx) + F(A4te4) + A4w)] 

+ F $ 3 
o[ 

2 A4(e4) + A,(v) 
I 

Eh3 + i A,(v) 1 2 t 6(1 t v)aAx 

(4.11) 

where the directional slopes are defined as 

(4. 12) 

-- A 4(w) e4=gzT 

In Eqs. (4. 10) and (4. ll), the A4 term is assumed equal to one radian as 

a matter of convenience. The form of the strain energy expressions are 

equivalent to 

6 E2 
zv=p=):+ 

j=l j 
(4. 13) 

where the spatial derivatives are defined as voltages and the reciprocal of 

the coefficients as resistors. 
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Figures 5 are electrically equivalent to Eqs. (4. lo), (4. 11) and (4. 12) 

and consist of five distinct circuits (u, v, w, Ox and 8 ) 
4 

coupled by the seven 

transformers. Compared with the membrane and bending strain energy ex- 

pressions, the voltages across each of the resistors correspond to the 

spatial derivatives and the resistor magnitudes are the reciprocals of the 

coefficients. Resistors R1 and R2 account for the extensional strain energy, 

R3 for the shear strain energy, R4 and R5 for the bending strain energy 

and R6 for the twisting strain energy. The coordinate locations are con- 

sistent with difference geometry and shown as Figure 5. By the stress- 

strain relationships of Eqs. (4. 4), (4. 5) and (4.6) and the strain expressions 

of Eq. (4.7), positive current flows through the six resistors are 

I(R1) = aNx 

I(R2) = Ax(N 4 
- vN,’ 

I(R3) = Nx4 

I(R4) = -aM 
X 

I(R5) = %(-M4+ vM,) 

I(R6) = 2Mx4 

(4.14) 

By assuming axial symmetry, the strain energy expression becomes 

very much simplified as the spatial derivatives become independent of 4 
and v equals zero. For this assumption, the strains reduce to 

33 



au 
e =- 

X ax 
e4=-: 

(4. 15) 

y =o 
x4 

a2w 
xx = - 

ax2 
x4 

=o 

(4. 16) 

X x4 
=o 

a 
-=o 

since a4 * 
In finite-difference form, the strain energy given by Eqs. (4. 8) 

resolve to 

2v = m Ax(l~~av2)px,u, -~w]2+z+[w] 

(4. 17) 

2vb = $$ Axe,) [ I 
2 

An analog circuit simulating Eq. (4. 17) is sketched as Figure 6. 

Three distinct circuits (u, w and Ox) are shown for a difference segment 

of dimension Ax ; and are coupled by transformers 1 and 2. Resistors 

R1 and R2 account for the strain energy in extension whereas R3 accounts 
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for the strain energy in bending. By the stress-strain relationships of 

Eqs. (4. 4) and (4. 5), the positive currents through the three resistors 

are 

I(R1) = aN 
X 

- I(R2) = Ax(N 
4 - vNx) 

: 

I(R3) = -aMx 

(4. 18) 
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Difference Section: 

4 

t X -u- *W+ 
t 

o-+u 

1 

Differential Section: 

1 
aA 

Figure 5. Geometry for a Cylindrical Shell 
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B C 

Figure 5-a. u Circuit for an Arbitrary Section of Cylindrical Shell 
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! ! I I 

R2 R2 

.-----.---- .-----.---- r r 

B C 

Figure 5-b. v Circuit for an Arbitrary Section of Cylindrical Shell 
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Circuit fo? an Arbitrary Section of ,Cylindrical Shell 
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5. SUMMARY REMARKS 

The derivations discussed herein are consistent with the basic 

theory presented in References 1 and 3. The analog circuits describe 

the static elastic behavior of difference segments of (1) a flat rec- 

tangular plate, (2) a flat circular plate and (3) a cylindrical shell. 

These circuits are mathematically equivalent to finite-difference models 

and physically equivalent to lumped parameter models. Such difference 

segments can be considered as elemental building blocks with which to 

synthesize a complete e?t?ctrical model of a physical system. 

As shown, the various analog circuits describe the static behavior 

of three specific elastic structures. These circuits can be routinely 

converted to describe the dynamic behavior of the three elastic struc- 

tures as mentioned in the Introduction. Although developed in terms 

of uniform physical properties (that is, uniform mass and stiffness 

distributions), these analogs can directly accommodate nonuniform 

physical properties. The boundary conditions can be arbitrary and the 

applied external loading can be any arbitrary deterministic or random 

function of both space and time. 

Of no less importance in this derivation is the procedure used to 

derive the analog models. The strain energy -electrical power equivalence 

used here is summarized, then applied to elasticity theory in Reference 2. 

Although considered in terms of structural applications, these same tech- 

niques can be applied to any physical system described as a function of 

space and time (i. e., a partial differential equation). 
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